Physiology and Biology of Detoxification

What is Detoxification?

A definition of Detoxification from Taber's Medical Dictionary:
“Detoxification is the reduction and chemical alteration of the toxic properties of a poisonous substance, which, when taken into the body by ingestion, inhalation, injection or absorption, causes damage to structure and interferes or disturbs normal physiological functions.”
The Physiology of Detoxification
Dicken Weatherby, N.D.

Toxicity Is Everywhere

Exogenous Toxicity
- Toxins in our food
- In our air and our breath
- In our homes
- In our water
- Drugs and Medications

We All Have Toxins In Our Bodies
- EPA biopsy studies showed:
 - 100% of human fat biopsies contain styrene
 - 100% of human fat biopsies contain dioxins
 - 100% of human fat biopsies contain xylene
 - 100% of human fat biopsies contain 1,4-dichlorobenzene

© Weatherby & Associates, LLC
The Physiology of Detoxification
Dicken Weatherby, N.D.

Exogenous Toxins
- Pesticides
- Benzene
 - A known cause of leukemia
- PCBs
 - Contaminate soil and food, never go away
- Xenoestrogens
 - Styrene, pesticides, detergents, solvents, trichloroethylene, auto exhaust
- Phthalates

Heavy Metals
- Mercury
 - From coal fired power stations, dental applications, pesticides etc..
- Cadmium
 - Accumulates from seafood, car tyres, auto exhaust
- Arsenic
 - Cigarettes, treated wood, paints, dental work

Endogenous toxicity
- Waste and toxicity of normal physiology
- Gut toxicity – large amounts of toxins are produced in our gut from:
 - Maldigestion of our food
 - Metabolic waste products from parasitic, bacterial or fungal infections in the GI
- Toxic Teeth
The Physiology of Detoxification
Dicken Weatherby, N.D.

Toxic Teeth
- Amalgam filings – 50% mercury!
- Metallic mercury in mouth becomes methylmercury via sulphydryl enzymes
- Mercury denervates nerves and inhibits hormonal action
- Mercury and candida
- Other chemicals in the mouth

Effects of Toxicity on Our Body
- Functional changes that manifest as poor health with symptoms such as:
 - Fatigue
 - Headaches
 - Lethargy
 - Weight problems
 - Depression
- Pathological changes that manifest as actual diseases such as:
 - Cancer
 - Auto-immune disease
 - Neurological disease
 - Arthritis
 - Gastrointestinal disease
 - Cardiovascular disease

© Weatherby & Associates, LLC
The Physiology of Detoxification
Dicken Weatherby, N.D.

The Nervous System

Symptoms
- Slow or fuzzy thinking
- Depression
- Poor memory
- Poor coordination
- Numbness in extremities

Diseases
- Parkinson’s disease
- Tourette’s syndrome
- Alzheimer's disease

The Liver

Symptoms
- Poor skin tone
- Yellowish color to skin
- Bitter taste in mouth
- Headaches
- Irritability
- Dark circles under eyes
- Sensitive to chemicals
- Difficulty digesting fat
- Yellow tongue coat

The Kidney

Symptoms
- Urine has strong odor
- Pruritus/skin eruptions
- Pain in mid-back region
- Urine is frothy
- Urinate infrequently
The Physiology of Detoxification
Dicken Weatherby, N.D.

The Immune System

Symptoms
- Frequent colds
- Frequent infections (bladder, skin, ear, sinus)
- Night sweats

Diseases
- Chronic Fatigue Syndrome
- Multiple chemical Sensitivity Syndrome
- Fibromyalgia

The Digestive System

Symptoms
- Bloating
- Diarrhea or constipation
- Belching or Gas
- Bad breath
- Stools loose or unformed
- Undigested food in stool

How does the body get rid of toxins?

The Physiology of Detoxification
The Organs of Detoxification

- The major organs of detoxification and elimination are:
 - The Liver/Gallbladder
 - The Lymphatic system
 - The Gastrointestinal tract
 - The Kidneys
 - The Skin

1. The Liver

Functions of the Liver

- Carbohydrate metabolism
- Fat metabolism
- Protein metabolism
- Storage of nutrients
- Immune
- Detoxification
The Physiology of Detoxification
Dicken Weatherby, N.D.

The Liver & Detoxification

- The liver plays a number of different roles in detoxification:
 - **Filtration of the blood**: Approximately 4 pints or 1.82 L of blood flows through the liver every minute.
 - **Production and secretion of bile**: The liver produces about 2 pints or 0.9 L of bile per day.
 - **The biotransformation of toxic substances**: by a complex system of inter-connected enzymes.

Summary of the Liver's Detoxification Pathways

![Diagram of the liver and its detoxification pathways](image)

LIVER DETOXIFICATION

TOXINS (non-polar)

- Endotoxins
- Xenobiotics

PHASE I

- Cytochrome P-450 enzyme system
- Hydroxylation via redox reactions
- Critical Co-factors: NADH, NADPH, B6, Mg

INTERMEDIATE METABOLITES may be toxic

PHASE II

- Conjugation reactions
 - Glutathione Conjugation
 - Amino Acid Conjugation
 - Glucuronidation
 - Sulfation
 - Methylation
 - Acetylation

EXCRETION

- (polar molecules)
- Kidney
- Urine
- Bile
- Feces

© Weatherby & Associates, LLC
Phase 1 detoxification

Cytochrome P450

- Cytochrome P450 has 3 different methods of detoxification:
 - Chemically transforms a toxic compound into a less toxic form, which is then detoxified in phase 2.
 - Makes a toxic compound water-soluble, which is more easily excreted by the kidney.
 - Transforms chemicals into forms that are more easily detoxified by phase 2.

Phase 1 & Cytochrome P450

Phase 1- Potential Problems

- A number of potential problems can occur with phase 1 detoxification, leading to toxic build-up in the blood:
 - Phase 1 can slow down.
 - Phase 1 can work faster than phase 2.
 - Phase 1 generates superoxide and ROS
Phase 1 Inhibitors

- Many factors can cause phase 1 to slow down:
 - Medications
 - Heavy metals
 - Diet
 - Foods and spices
 - Toxic compounds from the gut

Phase 1 inducers

- The following substances activate phase 1 detoxification:
 - Drugs
 - Foods
 - Vitamins
 - Environmental toxins
 - Herbs and spices

Phase 1 - Free Radicals & Antioxidant Deficiency

- Phase 1 detoxification produces free radicals

- The main antioxidant defense in phase 1 is Glutathione

- Glutathione and other antioxidant deficiencies can cause oxidative stress
The Physiology of Detoxification
Dicken Weatherby, N.D.

Phase 1 & Toxic Intermediates

- High levels of toxin exposure in phase 1 can deplete nutrients that are also used in phase 2
- The key nutrients needed for phase 1 detoxification are:
 - B vitamins: B2, B3, B6, B12 and folic acid
 - Glutathione
 - BCAA
 - Flavanoids
 - Minerals: Copper, Zinc, and magnesium
 - Vitamin C

Symptoms of Phase 1 Dysfunction

- Symptoms of under active Phase 1
 - Caffeine intolerance
 - Perfumes and other environmental chemicals make you sick
 - Liver disease

- Symptoms of overactive Phase 1
 - Rapid caffeine metabolism

Phase 2 Detoxification
The Physiology of Detoxification
Dicken Weatherby, N.D.

Six Enzyme Pathways of Phase 2
- Glutathione conjugation
- Amino acid conjugation
- Sulfation and sulfoxidation
- Methylation
- Acetylation
- Glucoronidation

1. Glutathione Conjugation
- Glutathione detoxifies fat-soluble toxins and carcinogens making them water-soluble
- About 60% of the toxins excreted in the bile are detoxified via glutathione conjugation
- Circulates in the blood acting as a free radical quencher
- Glutathione reserves can be run-down quickly causing deficiency.

Glutathione- Sources
- Glutathione is available via synthesis or diet
- Synthesis:
 - Glutathione is synthesized from glutamic acid, glycine and cysteine
- Diet:
 - Glutathione rich foods include asparagus, avocado, walnuts, cabbage, broccoli, Brussels sprouts
The Physiology of Detoxification
Dicken Weatherby, N.D.

2. Sulfation & Sulfoxidation
- Sulfation uses sulfur containing compounds to detoxify toxins and make them water-soluble
- It is one of the weakest phase 2 pathway due to inadequate supply of sulfur from diet
- Sulfation is responsible for the transformation of the following:
 - Hormones (steroid and thyroid)
 - Drugs
 - Industrial chemicals
 - Phenol containing compounds (plastic, disinfectants)
 - Toxins from the intestines
 - Neurotransmitters

- Sulfoxidation is closely linked to sulfation
- Detoxifies sulfur-containing molecules and sulfites in drugs and foods
- Abnormal sulfoxidation makes it hard for the body to detoxify sulfites
- Sulfoxidation problems can be helped with supplemental molybdenum

3. Amino Acid Conjugation
- The body uses five amino acids for detoxification:
 - Glycine
 - Taurine
 - Glutamine
 - Arginine
 - Ornithine)
- All 5 amino acids can be synthesized by the body
The Physiology of Detoxification
Dicken Weatherby, N.D.

4. Methylation
- Methylation involves conjugating methyl groups to toxins.
- Used to inactivate estrogens both endogenous and xenoestrogens
- Most of the methyl groups used for detoxification come from S-adenosylmethionine (SAM-e).

5. Acetylation
- Acetylation is the conjugation of toxins with acetyl-CoA
- The primary method to eliminate sulfa drugs.
- This system is sensitive to genetic variation
- This is the least understood phase II detox pathway.

6. Glucuronidation
- Glucuronidation is catalyzed by glucuronosyltransferase enzymes
- Detoxifies the following:
 - Bilirubin
 - Steroid and thyroid hormones
 - Retinoids
 - Bile acids
 - Lipophilic xenobiotics
- Glucuronidation and dysbiosis
Phase 2 Conjugation Requirements

- Phase 2 detoxification requires key nutrients for the activation of the enzymes
- It also requires energy to function and synthesize conjugating molecules
- Without nutrients and energy phase 2 detoxification can slow down, leading to increased toxin build-up
- There are also substances that inhibit phase 2 (phase 2 inhibitors), and substances that induce phase 2

Phase 2 Nutrients

<table>
<thead>
<tr>
<th>Required Nutrients</th>
<th>Glutathione, B6, C, precursors (Cysteine, Glycine, Glutamic Acid, and co-factors), EFAs (GLA, Flax Seed Oil, EPA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino acids</td>
<td>Glycine</td>
</tr>
<tr>
<td>Methylation</td>
<td>S-adenosyl-methionine (SAM-e), Mg, Folic Acid, B-12, Methyl Donors</td>
</tr>
<tr>
<td>Sulfation/</td>
<td>Cysteine, methionine, molybdenum, MSM, Co-factors (B-12, Folic Acid, Methyl Donors, Magnesium, B-6/P-5-P)</td>
</tr>
<tr>
<td>Sulfoxidation</td>
<td></td>
</tr>
<tr>
<td>Acetylation</td>
<td>Acetyl-CoA, Molybdenum, Iron, Niacinamide, B2</td>
</tr>
<tr>
<td>Glucuronidation</td>
<td>Calcium d-glucarate, glucaric acid, Mg</td>
</tr>
</tbody>
</table>

Phase 2 Inhibitors

<table>
<thead>
<tr>
<th>Phase 2 system</th>
<th>Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutathione</td>
<td>Deficiencies of: Selenium, B2, zinc, glutathione</td>
</tr>
<tr>
<td>Amino acids</td>
<td>Low protein diet</td>
</tr>
<tr>
<td>Methylation</td>
<td>Deficiencies: folic acid and vitamin B12</td>
</tr>
<tr>
<td>Sulfation/ Sulfoxidation</td>
<td>NSAIDS (aspirin), tartrazine (yellow food coloring), molybdenum deficiency</td>
</tr>
<tr>
<td>Acetylation</td>
<td>Deficiencies of: vitamin B2, B5 or C</td>
</tr>
<tr>
<td>Glucuronidation</td>
<td>Aspirin, probenecid</td>
</tr>
</tbody>
</table>
The Physiology of Detoxification
Dicken Weatherby, N.D.

Phase 2 Inducers

<table>
<thead>
<tr>
<th>Phase 2 system</th>
<th>Inducers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutathione</td>
<td>Brassica-family foods (cabbage, broccoli, Brussels sprouts), limonene (citrus peel, dill and caraway)</td>
</tr>
<tr>
<td>Amino acids</td>
<td>Glycine</td>
</tr>
<tr>
<td>Methylation</td>
<td>Lipotrophic nutrients (choline, betaine, methionine, folic acid, vitamin B12)</td>
</tr>
<tr>
<td>Sulfation</td>
<td>Cysteine, taurine and methionine</td>
</tr>
<tr>
<td>Acetylation</td>
<td>None known</td>
</tr>
<tr>
<td>Glucororidation</td>
<td>Fish oils, cigarettes, Phenobarbital, limonene (citrus peel, dill and caraway), oral contraceptives</td>
</tr>
</tbody>
</table>

Symptoms of Phase 2 Dysfunction

- **Sulfoxidation**
 - Adverse reaction to sulfite food additives
 - Asthma reactions after eating in restaurant
 - Eating asparagus causes strong odor of urine
 - Garlic makes you sick
- **Amino acid conjugation**
 - Toxemia of pregnancy
- **Glucororidation**
 - Gilbert’s disease
 - Yellow color to eyes and skin with no hepatitis
- **Glutathione**
 - Chronic exposure to toxins
- **Sulfation and amino acid conjugation**
 - Intestinal toxicity

Toxins and Liver Detoxification Pathways

- **Endotoxins**
 - End products of metabolism
 - Bacterial endotoxins
- **Exotoxins**
 - Drugs otc recidential
 - Chemicals
 - Agricultural
 - Food additives
 - Household
 - Pollutants/contaminants
- **Microbial**
 - Superoxide

- **Reactive Oxygen Intermediates**
 - Free Radicals
 - Lipid soluble (non polar)
 - Toxins stored in adipose tissue
 - Contribute to increased/mobilised Toxic load with weight loss

- **Liver Detoxification Pathways and Supportive Nutrients**
 - Phase I
 - Cytochrome P450 enzymes
 - Phase II
 - Conjugation pathways
 - Glutathione conjugation
 - Glucororidation
 - Sulfation conjugation
 - Amino acid conjugation
 - Acetylation
 - Bile
 - Feces
 - Urine
 - **Antioxidants**
 - Plant derivatives
 - Bile
 - Feces
 - Urine
The Physiology of Detoxification
Dicken Weatherby, N.D.

Antioxidants/protective Nutrients plant derivatives

• Carotenes Vit A
• Ascorbic Acid Vit C
• Tocopherols Vit E
• Selenium
• Copper
• Zinc
• Manganese
• CoEnzyme Q10
• Thiols (Cruciferous vegetables)
• Bioflavanoids
• Silymarin
• Oligomeric proanthocyanadins (OPCs)
and pycnogenols

What can be done to keep these phases healthy?

▪ Diet

▪ Eat foods that support healthy liver function

▪ Specific foods and nutrients have a beneficial effect on the body’s ability to detoxify

Foods That Support Liver Detoxification

▪ Brassica-family foods (cabbage, broccoli, Brussels sprouts)
▪ Cold water fish
▪ Flaxseed-oil
▪ Fresh fruit
▪ Garlic
▪ Nuts and seeds
▪ Onions
▪ Spices: turmeric, cinnamon, licorice

▪ Oils: Safflower, sesame & sunflower
▪ Fresh vegetables (artichokes, beets, carrots, dandelion greens)
▪ Walnut oil
▪ Wheat germ and oil
▪ Eggs
▪ Water-soluble fiber: pears, oat bran, apples, legumes
Nutrients that support liver detoxification

- Bioflavonoids
- EFAs: black currant oil, evening primrose oil, borage oil
- CoQ-10
- Minerals: magnesium, manganese, iron, zinc, selenium
- Carotenes
- Choline
- Reduced glutathione
- Betaine
- N-acetylcysteine
- Methionine
- Vitamins: A, B2, B3, B6, B12, C, D, E, K, folic acid
- Trace minerals and electrolytes
- Milk thistle (Silymarin)

2. The Gallbladder & Bile Flow

![Diagram of the gallbladder and bile flow]

3. The Lymphatic System

![Diagram of the lymphatic system]

© Weatherby & Associates, LLC
4. The Gastrointestinal System

- A large portion of lymphatic tissue resides in the intestines.
- These nodes, known as Peyer’s patches, are imbedded in the intestinal wall.
- This tissue is known as the Gut Associated Lymphoid Tissue (GALT) and comprises about 60% of all lymph tissue.
- The Peyer’s patches act as a per-filter for all of the blood flowing from the intestines to the liver.

5. The Skin
6. The Kidneys

SUMMARY